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The postulates…..

1.

 

Associated with any particle moving in a conservative field of force is a wave 
function, ψ,

 

which determines everything that can be known about the system.

2.

 

With every physical observable,

 

q

 

, there is associated an operator,

 

Q, which, when 
operating upon the wavefunction

 

associated with a definite value of that observable, 
will yield that value (the eigenvalue) times the wavefunction. The eigenvalues

 

of a 
given operator are the only

 

values that a measurement can take.

3.

 

The time evolution of Ψ

 

is given by the time dependent Schrödinger equation.

4.

 

The set of eigenfunctions

 

of operator Q

 

will form a complete

 

set of linearly 
independent (orthogonal) functions. 

5.

 

For a system described by a given wavefunction, the expectation value

 

of any property 
q

 

can be found by performing the expectation value integral with respect to that 
wavefunction.



1: The Wavefunction
 

Postulate

For a physical system consisting of a single  particle there is an associated 
wavefunction, Ψ, which determines everything that can be known about the system.

Ψ is assumed to be a single-valued function of position and time, since that is 
sufficient to guarantee an unambiguous value of probability of finding the particle at a 
particular position and time. 

Ψ may be complex, since it is its product with its complex conjugate which specifies 
the real physical probability of finding the particle in a particular state.
Ψ (x,t) = single-valued probability amplitude at (x,t) for finding a particle at a given 
point in space at a given time. 
Ψ *(x,t). Ψ(x,t) = | Ψ(x,t)|2 = probability of finding the particle at  x at time t (Born 
Interpretation)

Since the probability must be 1 for finding the particle somewhere, the wavefunction
must be normalised. That is, the sum of the probabilities for all of space must be 
equal to one. This is expressed by the integral  ∫ Ψ * Ψ dr = 1.



Constraints on the wavefunction

In order to represent a physically observable system, ψ must satisfy certain constraints:

Must be a solution of the Schrödinger equation; This implies:
Must be single-valued;
Must be normalisable; this implies that the ψ→ 0 as x →∞;
ψ (x) must be a continuous function of x;
The slope of ψ must be continuous, specifically dψ (x) / dx must be continuous (except 
at points where potential is infinite). 

These constraints are applied to the boundary conditions on the solutions, and in the process 
help determine the energy eigenvalues.
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2: The Hamiltonian –
 

the energy operator

Associated with each measurable parameter

 

in a physical system is a quantum mechanical 
operator, and the operator associated with the system energy

 

is called the Hamiltonian. The 
Hamiltonian contains the operations associated with the kinetic and potential energies

 

and 
for a particle in one dimension can be written:
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Operating on ψ

 

with the Hamiltonian produces the Schrödinger equation.

 

In the time 
independent Schrödinger equation, the operation may produce specific values for the 
energy called energy eigenvalues. This situation can be shown in the form of a eigenvalue

 
Equation:

Hψi

 

= Eψi

where the specific values of energy are called energy eigenvalues

 

and the functions ψi

 

are 
called eigenfunctions. 



Form of the Hamiltonian
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The operators representing the

 

position

 

and momentum

 

of a particle are:

1 dimension

3 dimensions

Other operators may be obtained from the corresponding classical

 

expressions by 
making these replacements everywhere.

For example:

Kinetic energy:
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What about an angular momentum operator?



3: The Schrödinger Equation

The SE plays the role of Newton's laws and conservation of energy in classical mechanics – i.e., 
it predicts the future behaviour of a dynamic system. 

The SE is a wave equation in terms of the wavefunction which predicts analytically and precisely 
the probability of events or outcome. The detailed outcome is not strictly determined, but given a 
large number of events, the Schrödinger equation will predict the distribution of results.

The kinetic and potential energies are transformed into the Hamiltonian which acts upon the 
wavefunction to generate the evolution of the wavefunction in time and space. 

The SE gives the quantized energies of the system and gives the form of the wavefunction so that 
other properties may be calculated. 

Though the SE cannot be derived, it can be shown to be consistent with experiment. 



The time dependent Schrödinger equation (TDSE)
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In addition to its role in determining system energies, 
the Hamiltonian operator generates the time evolution

 
of the wavefunction

 

in the form:

Suppose the potential is independent of time i.e. 
V(x, t) = V(x)

LHS involves variation of ψ

 

with t

 

while RHS involves variation of ψ

 

with x. Hence 
look for a separated solution:

Then (see earlier):
h/)()()(),( iEtextTxtx −==Ψ ψψ  



The Schrödinger Equation contd.

Time Independent Schrödinger 
Equation:
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SE describes the motion of a particle of mass m, moving under influence of a potential 
field V(x) (in 1-D).

 

Solve SE for a given V(x) to determine the wavefunctions

 

(~ spatial 
probability distribution) and possible energies, E, of the particle.

The Schrödinger Equation

 

is the form of an Eigenvalue

 

Equation: ψψ EH =ˆ

where Ĥ

 

is the Hamiltonian operator,

ψis the wavefunction

 

and is an eigenfunction

 

of Ĥ;

E

 

is the total energy (T

 

+ V) and an eigenvalue

 

of Ĥ.
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4. “Special”
 

properties of eigenvalues
 

and eigenfunctions

In general the eigenvalues

 

and eigenfunctions

 

of a particular operator, Q, have the 
following important properties.

(I) The eigenvalues

 

of a given operator are the only

 

values that a measurement can take.

(II) The corresponding eigenfunctions

 

are orthogonal.
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(III) The eigenfunctions

 

φi

 

of an operator form a complete set. This means that any other 
function satisfying the same boundary conditions can be expanded

 

as follows:

i.e. any ψ

 

can be written as a superposition

 

of different eigenfunctions. (See particle in 
box).
If the eigenfunctions

 

are orthonormal

 

then the coefficients ci

 

can be found as follows:

ijji dxxxNB δφφ =∫
∞
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)()(: * These expansions are important for describing 
measurements in quantum mechanics.



5: Expectation Values

To relate a quantum mechanical calculation to something you can observe in the laboratory, the 
expectation value

 

of the measurable parameter is calculated. For the position x, the expectation 
value (for a normalised wavefunction) is defined as
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Integral can be interpreted as the average value

 

of x

 

that we would expect to obtain from a large 
number of measurements.Alternatively, it could be viewed as the average value of position for a 
large number of particles which are described by the same wavefunction.

While the expectation value of a function of position

 

has the appearance of an average

 

of the 
function, the expectation value of momentum

 

involves the representation of momentum as a 
quantum mechanical operator:
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is the operator for the x

 

component of momentum.



All observables A
 

have associated operators Â:

τψψ d  ∫= AA ˆ*ˆ

If ψ

 

is an eigenfunction

 

of Â, then: Âψ

 

= αψ

 

and the observable takes on the

 

precise

 
eigenvalue

 

α . Eigenvalues

 

are identical with the observed values (which have been 
repeatedly confirmed in innumerable experiments, e.g. measurements of the energy of 
the electron in hydrogen have to agree with the quantum mechanically calculated 
eigenvalues

 

En

 

).

If ψ

 

is not

 

an eigenfunction

 

of Â, then a measurement of A

 

may give any of the different 
possible eigenvalues

 

of the operator Â

 

with different probabilities. This ‘mean value’

 

or 
expectation value

 

of an observable A,

 

denoted 〈A〉

 

is defined by the integral 

(only valid for normalised wavefunctions)

Or more generally,
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Uncertainty

ατψψατψαψτψψ ==== ∫∫∫ d  d  d  **ˆ*ˆ AA

In the special case where ψ

 

is an eigenfunction

 

of Â, of course, this integral gives the 
precise eigenvalue, α:

More generally, if the system’s wavefunction

 

is not an eigenfunction

 

of the operator Â

 
then there is an uncertainty

 

in the corresponding observable. The standard deviation

 
of the observable is defined as follows:

22 ˆˆˆ AAA −=Δ

Example: Evaluate the product ΔxΔpx

 

for the ground state wavefunction

 

for a particle 
in a box.



Simultaneous observability
 

and commutation relations

A Ψ

 

with a characteristic, well-defined value of some observable quantity is an 
eigenfunction

 

of the corresponding operator. However, such a Ψ

 

does not necessarily 
have a characteristic value of any other observable. e.g.) H and px for a particle in a box.

For Ψ

 

to have characteristic values of two observables it is necessary for the corresponding 
operators to commute.

Specifically this means that the action of the two operators (say Â

 

and Ĉ

 

) taken in 
succession on any Ψ

 

is identical to the action of the two operators taken in the reverse 
order,  Â Ĉ

 

= Ĉ

 

Â ,  or equivalently the commutator

 

of the two operators is zero:

[ ] .0ˆˆˆˆˆ,ˆ =−= ACCACA

If two operators commute

 

it is possible to find a Ψ

 

which has characteristic values of both 
observables, i.e. Ψ

 

which is simultaneously an eigenfunction

 

of both operators.



Example

Consider the position and momentum operators:
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These two operators do not

 

commute (the value of the expression is iħ

 

≠

 

0), and 
therefore their observables (position and linear momentum) are complementary: it is 
not possible to specify the values of the two corresponding observables simultaneously. 
This is the origin of the Uncertainty Principle. 

In anticipation of the 2nd year QM course……In general, if the commutation relation 
[Â ,Ĉ

 

] = i Ê

 

, then Ê

 

is called the commutator

 

of Â and Ĉ

 

. The uncertainty in the 
simultaneous measurement of Â

 

and Ĉ

 

is determined by the value of their commutator

 

Ê

 

: 
〈[Â ,Ĉ]〉

 

= i

 

〈Ê〉

 

, and a mathematical proof can be given that ΔÂ

 

Δ

 

Ĉ

 

≥

 

½ | 〈Ê〉

 

| .

 For the above example we get: Ê

 

= ħ

 

Î , so: Δ

 

x Δ

 

px

 

≥

 

½

 

ħ

 

.

(N.B.: Î

 

is the unity operator, ‘multiply by one’)



Summary of the Uncertainty Principle

3 ways to think of the Uncertainty Principle:

1.

 

As the inherent disturbance of the system by a measurement (e.g. electron diffraction).

2.

 

As a consequence of Fourier transforms –

 

a highly localised wavepacket

 

in space is 
constructed from individual waves having a wide range of wavevectors

 

i.e.

 

momentum 
states.

3.

 

As a consequence of the fact that the operators x and px do not commute and therefore 
cannot share eigenfunctions. Hence the corresponding observables, position and 
momentum, cannot have precisely defined values simultaneously.



Do you get it?

1.

 

What is the eigenvalue

 

of ψ

 

= (2π)−1/2e−i4φ

 

, with respect to the operator Â

 

= (ħ/i)d/dφ?

2.

 

The Hamiltonian for the system above is  Ĥ

 

= −(ħ2

 

/2I )(d2

 

/dφ 2 ) where I

 

is a constant. 
What is the energy of the state with the wavefunction

 

given above?

3.

 

Another wavefunction

 

for the system above is ψ

 

= (2π)−1/2

 

e−i3φ

 

. Is this wavefunction

 
orthogonal to ψ

 

= (2π)−1/2 e−i4φ

 

?

4.

 

If the system is found in the state ψ

 

= (2π)−1/2

 

[(3)−1/2

 

e−i3φ

 

+ c

 

e−i4φ], what value(s) for 
the constant c

 

normalises ψ?

5.

 

What is < Â >

 

for the operator Â

 

with

 

ψ

 

= (2π)−1/2

 

[(3)−1/2

 

e−i3φ

 

+ c

 

e−i4φ]?

6.

 

What is  ΔA

 

for the system in question 5 above?

7.

 

If  B = φ

 

and A = (ħ/i)d/dφ

 

, then [A, B] = (ħ/i). What is the smallest allowed ΔB

 

for the 
ΔA

 

above?
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Answers contd.
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